group topology - Übersetzung nach russisch
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

group topology - Übersetzung nach russisch

TOPOLOGICAL GROUP THAT IS ISOMORPHIC TO THE INVERSE (PROJECTIVE) LIMIT OF AN INVERSE SYSTEM OF DISCRETE FINITE GROUPS
Pro-finite; Krull topology; Profinite completion; Pro-finite group; Profinite groups; Profinite topology; Procyclic group; Projective profinite group; Draft:Procyclic

group topology      

математика

групповая топология

profinite group         

математика

проконечная группа

topological group         
GROUP THAT IS A TOPOLOGICAL SPACE WITH CONTINUOUS GROUP ACTION
Continuous group; Topological groups; Topological Group; Closed subgroup; Quasitopological group; Birkhoff–Kakutani theorem; Birkhoff-Kakutani theorem; Translation invariant topology; Complete topological group; Metrisable group; Metrizable group; Metrizable topological group; Metrisable topological group

математика

топологическая группа

Definition

Крайслер

Wikipedia

Profinite group

In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups.

The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. Properties of the profinite group are generally speaking uniform properties of the system. For example, the profinite group is finitely generated (as a topological group) if and only if there exists d N {\displaystyle d\in \mathbb {N} } such that every group in the system can be generated by d {\displaystyle d} elements. Many theorems about finite groups can be readily generalised to profinite groups; examples are Lagrange's theorem and the Sylow theorems.

To construct a profinite group one needs a system of finite groups and group homomorphisms between them. Without loss of generality, these homomorphisms can be assumed to be surjective, in which case the finite groups will appear as quotient groups of the resulting profinite group; in a sense, these quotients approximate the profinite group.

Important examples of profinite groups are the additive groups of p {\displaystyle p} -adic integers and the Galois groups of infinite-degree field extensions.

Every profinite group is compact and totally disconnected. A non-compact generalization of the concept is that of locally profinite groups. Even more general are the totally disconnected groups.

Übersetzung von &#39group topology&#39 in Russisch